The structural basis of a high affinity ATP binding ε subunit from a bacterial ATP synthase

نویسندگان

  • Alexander Krah
  • Yasuyuki Kato-Yamada
  • Shoji Takada
چکیده

The ε subunit from bacterial ATP synthases functions as an ATP sensor, preventing ATPase activity when the ATP concentration in bacterial cells crosses a certain threshold. The R103A/R115A double mutant of the ε subunit from thermophilic Bacillus PS3 has been shown to bind ATP two orders of magnitude stronger than the wild type protein. We use molecular dynamics simulations and free energy calculations to derive the structural basis of the high affinity ATP binding to the R103A/R115A double mutant. Our results suggest that the double mutant is stabilized by an enhanced hydrogen-bond network and fewer repulsive contacts in the ligand binding site. The inferred structural basis of the high affinity mutant may help to design novel nucleotide sensors based on the ε subunit from bacterial ATP synthases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of thermophilic F1-ATPase by the ε subunit takes different path from the ADP-Mg inhibition

The F1-ATPase, the soluble part of FoF1-ATP synthase, is a rotary molecular motor consisting of α3β3γδε. The γ and ε subunits rotate relative to the α3β3δ sub-complex on ATP hydrolysis by the β subunit. The ε subunit is known as an endogenous inhibitor of the ATPase activity of the F1-ATPase and is believed to function as a regulator of the ATP synthase. This inhibition by the ε subunit (ε inhi...

متن کامل

Regulatory conformational changes of the epsilon subunit in single FRET-labeled FoF1-ATP synthase

Subunit ε is an intrinsic regulator of the bacterial FoF1-ATP synthase, the ubiquitous membrane-embedded enzyme that utilizes a proton motive force in most organisms to synthesize adenosine triphosphate (ATP). The C-terminal domain of ε can extend into the central cavity formed by the α and β subunits, as revealed by the recent X-ray structure of the F1 portion of the Escherichia coli enzyme. T...

متن کامل

Bio-layer interferometry for measuring kinetics of protein-protein interactions and allosteric ligand effects.

We describe the use of Bio-layer Interferometry to study inhibitory interactions of subunit ε with the catalytic complex of Escherichia coli ATP synthase. Bacterial F-type ATP synthase is the target of a new, FDA-approved antibiotic to combat drug-resistant tuberculosis. Understanding bacteria-specific auto-inhibition of ATP synthase by the C-terminal domain of subunit ε could provide a new mea...

متن کامل

Role of the mitochondrial ATP synthase central stalk subunits γ and δ in the activity and assembly of the mammalian enzyme.

The central stalk of mitochondrial ATP synthase consists of subunits γ, δ, and ε, and along with the membraneous subunit c oligomer constitutes the rotor domain of the enzyme. Our previous studies showed that mutation or deficiency of ε subunit markedly decreased the content of ATP synthase, which was otherwise functionaly and structuraly normal. Interestingly, it led to accumulation of subunit...

متن کامل

Bedaquiline Targets the ε Subunit of Mycobacterial F-ATP Synthase

The tuberculosis drug bedaquiline inhibits mycobacterial F-ATP synthase by binding to its c subunit. Using the purified ε subunit of the synthase and spectroscopy, we previously demonstrated that the drug interacts with this protein near its unique tryptophan residue. Here, we show that replacement of ε's tryptophan with alanine resulted in bedaquiline hypersusceptibility of the bacteria. Overe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017